首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   23篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   9篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   10篇
  2007年   12篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1976年   2篇
  1859年   1篇
  1858年   5篇
  1857年   4篇
  1855年   1篇
  1852年   5篇
排序方式: 共有179条查询结果,搜索用时 343 毫秒
71.
Drosophila seminal fluid proteins elicit physiological and behavioral changes in the female after mating. For example, the seminal protein sex peptide (SP) causes females to lay more eggs, reduce receptivity to re-mating, consume more food and produce more concentrated excreta upon mating. It has been reported that SP indirectly increases food consumption as a result of its stimulation of egg production, but its role in producing more concentrated excreta in the mated female was reported to be independent of egg production. Additionally, it has been shown that SP’s effect on food consumption persists for several days after mating, while it is unknown whether this is true for its effect on excretion.  相似文献   
72.
Notiz     
Ohne Zusammenfassung  相似文献   
73.
H F Lin  M F Wolfner 《Cell》1991,64(1):49-62
The maternal-effect gene fs(1)Ya is specifically required for embryonic mitosis in Drosophila. fs(1)Ya is involved in the initiation of the first embryonic mitosis and may also be necessary for subsequent embryonic mitotic divisions. fs(1)Ya encodes a 91.3 kd hydrophilic protein containing two putative MPF phosphorylation target sites and two potential nuclear localization signals. This protein is synthesized during postoogenic maturation from its maternal RNA and persists throughout embryogenesis. In early embryos, the fs(1)Ya protein is localized to the nuclear envelope from interphase to metaphase. During anaphase and telophase, it is dispersed in the nucleoplasm and cytoplasm, a behavior that is different from that of both the nuclear envelope and lamins. These results suggest that the fs(1)Ya protein is a cell cycle-dependent component of the nuclear envelope that specifically functions in embryonic mitosis.  相似文献   
74.
75.
Sex-specific regulation of yolk protein gene expression in Drosophila   总被引:16,自引:0,他引:16  
  相似文献   
76.
77.
78.
Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through “hacking” a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones.  相似文献   
79.
Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP''s actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks.  相似文献   
80.
Genistein, a phytoestrogen found in soybeans, is a powerful antioxidant. We evaluated the effects of genistein supplementation on performance, carcass characteristics, levels of malondialdehyde (MDA), homocysteine, vitamins C, E, A in Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature of 34°C. Two hundred and forty Japanese quails (10 d old) were randomly assigned to eight treatment groups consisting of 10 replicates of three birds. The birds were kept in an environmental controlled room either for 24 h/d at 22°C with (thermoneutral, TN groups) or for 16 h/d at 22°C and for 8 h/d (09.00 am to 05.00 pm) at 34°C (heat stress, HS groups). Birds were fed either a basal (control) diet (TN and HS) or the basal diet supplemented with 200, 400 or 800 mg of genistein per kg of diet. Heat exposure decreased birds' performance when basal diet was fed. Increase in feed intake and body weight, and improvement of feed efficiency and carcass traits were found in genistein-supplemented quails reared under heat stress conditions. Growth rate and feed efficiency improved in quails reared under thermo-neutral conditions as well. Concentration of serum vitamins C, E, and A increased in supplemented birds reared at high temperature, while non-significant changes occurred in TN groups. With genistein supplementation homocysteine levels in serum and MDA levels in serum and liver decreased in all birds of both TN and HS groups. Effects of genistein were relatively greater in heat-stressed quails than in quails kept under thermo-neutral conditions. Results of the present study suggest that supplementation with genistein can be considered to be protective by reducing the negative effects of oxidative stress induced by heat stress in quail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号